Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

trans-Bis(dimethylglyoximato- $\left.\kappa^{2} N, N^{\prime}\right)$ -(1-hexenyl)(pyridine- κN)cobalt(III): a cobaloxime-substituted terminal alkene that rapidly isomerizes to a cobaloxime-substituted internal alkenyl complex

Kerry A. Pickin, Cynthia S. Day, Marcus W. Wright and Mark E. Welker*

Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA Correspondence e-mail: welker@wfu.edu

Received 18 March 2003
Accepted 25 March 2003
Online 30 April 2003
An unusual cobaloxime-substituted terminal alkene, [Co$\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$], has been isolated and characterized by X-ray crystallography. The double bond in the alkene readily isomerizes, but the title compound could be isolated and structurally characterized at low temperature.

Comment

We have been interested in the preparation of cobaloxime complexes [cobaloxime is bis(dimethylglyoximato)(pyridine)cobalt] that contain $\mathrm{Co}-\mathrm{Cs} p^{2}$ bonds and the use of these complexes in cycloaddition chemistry (Welker, 2001). In 2000, we reported a new method for the preparation of $\mathrm{Co}-\mathrm{C} s p^{2}$ bonds, which involved a zinc-mediated coupling of alkenyl halides and trifluoromethane sulfonates, (II), to $(\mathrm{py})_{2}(\mathrm{dmg})_{2^{-}}$ Co (py is pyridine and dmg is dimethylglyoximate; Pickin \& Welker, 2000). One of the coupling products prepared, a 2-cobaloxime-substituted 1 -hexene complex, (III), isomerized readily to (E)-2-cobaloxime-2-hexene, (IV). Complex (III) has now been crystallized at low temperature and its structure is reported here.

The molecular structure of (III) is depicted in Fig. 1, and selected geometric parameters are given in Table 1. The Co atom is coordinated in a slightly distorted octahedral geometry. The $\mathrm{Co}-\mathrm{N}$ bond distances in the equatorial plane $(\mathrm{Co}-\mathrm{N} 1, \mathrm{Co}-\mathrm{N} 2, \mathrm{Co}-\mathrm{N} 3$ and $\mathrm{Co}-\mathrm{N} 4)$ are $1.871(5)$, 1.877 (5), 1.881 (5) and 1.903 (5) \AA, respectively. The CoN 5 py bond length is 2.089 (4) \AA and the $\mathrm{Co}-\mathrm{C} 10$ distance is 1.994 (5) Å. The Co and N1-N4 atoms are coplanar within $0.016 \AA$ A. The nearly coplanar $\mathrm{Co} 1 / \mathrm{C} 9 / \mathrm{C} 10 / \mathrm{C} 11 / \mathrm{C} 12$ (to within $0.05 \AA$) and Co1/N5/C15/C16/C17/C18/C19 (to within $0.03 \AA$) groups are almost parallel (5.2°) and are oriented so that they bisect the $\mathrm{N} 4-\mathrm{Co}-\mathrm{N} 1$ and $\mathrm{N} 2-\mathrm{Co}-\mathrm{N} 3$ angles. This
arrangement minimizes the inter-ligand steric interaction of the axial ligands with the dimethylglyoxime ligands. The $\mathrm{Co}-$ C 10 bond [1.994 (5) \AA] falls in the range of other $\mathrm{Co}-\mathrm{Csp}{ }^{2}$ bond lengths that we have reported for cobaloxime-dienyl complexes [1.954 (15)-2.019 (6) A; Stokes et al., 1995; Wright et al., 1994]. This bond length is significantly longer than those reported previously for cobaloxime-ethenyl complexes [1.945 (5)-1.953 (3) Aं; McCauley et al., 2002] but comparable to $\mathrm{Co}-\mathrm{Csp}{ }^{2}$ bond lengths in cobaloxime complexes containing longer C -atom chains in the alkenyl fragment [1.971 (13), 1.972 (7) and 1.976 (4) Å; Stolter et al., 1975; Adams et al., 1997, 1998]. Previously reported Co-Csp ${ }^{3}$ bond lengths in cobaloxime complexes range from 1.998 (5) A for the cobaloxime-methyl complex to 2.085 (3) \AA for the isopropyl complex (Bresciani-Pahor et al., 1985). The C9=C10 double bond in the hexenyl ligand [1.324 (7) \AA] is largely unaffected by the presence of the cobaloxime, and this observation has also been made for the other cobaloximesubstituted alkenyl complexes referenced above. The Co$\mathrm{C} 10-\mathrm{C} 9$ and $\mathrm{Co}-\mathrm{C} 10-\mathrm{C} 11$ bond angles are 119.3 (4) and 117.5 (4) ${ }^{\circ}$, respectively. Most $\mathrm{Co}-\mathrm{C}^{\alpha} s p^{2}-\mathrm{C}^{\beta} s p^{2}$ bond angles reported previously have been larger than 120°, but we have reported two other examples of cobaloxime-alkenyl and cobaloxime-dienyl complexes in which these angles were 118.3 (3) and 116.7 (5) ${ }^{\circ}$ (Adams et al., 1997; Stokes et al., 1995). Intramolecular hydrogen-bonding interactions involving equatorial dimethylglyoximate ligands are described in Table 2. The values reported here agree with corresponding values reported for 200 compounds with 269 relevant bonds in the Cambridge Structural Database (Allen, 2002), with average $\mathrm{O} \cdots \mathrm{O}$ contacts and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angles of $2.488 \AA$ and 168.2°, respectively.

The cobaloxime-alkenyl complex (III), which contains a terminal alkene, underwent facile double-bond isomerization upon attempted silica chromatography or simply upon standing in CDCl_{3}. The rate constant for isomerization was determined by analysis of the appearance of the alkenyl methyl signal, as described below. The alkenyl complex to which (III) isomerized was demonstrated to contain the

Figure 1

The molecular structure of (III). All non-H atoms are represented by displacement ellipsoids at the 50% probability level. H atoms are represented by spheres of arbitrary radii, which are in no way representative of the true thermal motion of the atoms. Hydrogenbonding interactions are represented by double dashed lines.
(E)-alkene geometry shown in (IV), on the basis of the observation of a strong nOe (nuclear Overhauser effect) from the alkenyl H atom to the methyl groups of the dimethylglyoxime ligand, and the absence of an nOe from those same methyl groups to the methyl or methylene H atoms α to the alkene in the hexenyl ligand.

Experimental

Complex (III) was prepared as described by Pickin \& Welker (2000). Crystals were grown by slow diffusion of pentane into a 1,2 -dichloroethane solution of (III) at 253 K . The isomerization kinetics experiment was carried out in CDCl_{3}. The rate constant was determined by analysis of the appearance of the alkenyl methyl signal, and this analysis was carried out for several half lives. An array of ${ }^{1} \mathrm{H}$ spectra (acquisition time of 1.0 min) were acquired every 10.0 min for 170 min (nine half lives). All spectra were processed and phased with the same parameters. The appearance of the alkenyl methyl signal was integrated relative to the ortho-pyridine signal. SIGMAPLOT2000 (SPSS Science Inc., Chicago, IL) was used to determine the rate constant for an integration (I) versus time (t) plot. The equation for an exponentially rising peak with a maximum of $I=I_{\mathrm{o}}[1-\exp (-k t)]$ was used to fit the data. A rate constant of $3.9 \times 10^{-2} \mathrm{~min}^{-1}$ ($R=0.9707$) with a half life of 18 min was calculated.

Crystal data

```
\(\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]\)
\(M_{r}=451.41\)
Monoclinic, \(P n\)
\(a=8.268(3) \AA\)
\(b=11.757\) (3) \(\AA\)
\(c=11.0253(19) \AA\)
\(\beta=93.721\) (18) \({ }^{\circ}\)
\(\beta=1069.5(4) \AA^{3}\)
\(Z=2\)
```

$$
\begin{aligned}
& D_{x}=1.402 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 39 \\
& \quad \text { reflections } \\
& \theta=3.0-12.0^{\circ} \\
& \mu=0.84 \mathrm{~mm}^{-1} \\
& T=228(2) \mathrm{K} \\
& \text { Chunk, orange } \\
& 0.45 \times 0.24 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker P4 diffractometer

ω scans

Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.151, T_{\text {max }}=0.187$
3254 measured reflections
2971 independent reflections
2660 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.034 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-1 \rightarrow 10 \\
& k=-15 \rightarrow 1 \\
& l=-14 \rightarrow 14 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 197 \text { reflections } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.106$
$S=1.05$
2971 reflections
278 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.065 P)^{2}\right. \\
\quad+0.1117 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.65 \mathrm{e}^{\circ} \AA^{-3} \\
\Delta \rho_{\min }=-0.24 \mathrm{e} \AA^{-3} \\
\text { Absolute structure: Flack }(1983) \\
\text { Flack parameter }=0.09(2)
\end{array}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

Co1-N1	$1.871(5)$	$\mathrm{N} 1-\mathrm{C} 1$	
Co1-N2	$1.877(5)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.303(8)$
Co1-N3	$1.881(5)$	$\mathrm{N} 3-\mathrm{C} 3$	$1.292(7)$
Co1-N4	$1.903(5)$	$\mathrm{N} 4-\mathrm{C} 4$	$1.297(7)$
Co1-C10	$1.994(5)$	$\mathrm{N} 5-\mathrm{C} 15$	$1.303(8)$
Co1-N5	$2.089(4)$	$\mathrm{N} 5-\mathrm{C} 19$	$1.338(6)$
O1-N1	$1.360(6)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.342(6)$
O2-N2	$1.342(6)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.458(8)$
O3-N3	$1.349(6)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.448(10)$
$\mathrm{O} 4-\mathrm{N} 4$	$1.330(6)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.324(7)$
			$1.482(7)$
N1-Co1-N2	$81.7(2)$	$\mathrm{N} 4-\mathrm{Co} 1-\mathrm{C} 10$	
N1-Co1-N3	$178.4(2)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 5$	$89.5(2)$
N2-Co1-N3	$98.31(19)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 5$	$89.82(18)$
N1-Co1-N4	$98.70(19)$	$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 5$	$89.40(18)$
N2-Co1-N4	$179.6(2)$	$\mathrm{N} 4-\mathrm{Co} 1-\mathrm{N} 5$	$91.74(19)$
N3-Co1-N4	$81.3(2)$	$\mathrm{C} 10-\mathrm{Co} 1-\mathrm{N} 5$	$90.50(19)$
N1-Co1-C10	$89.7(2)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$179.5(2)$
N2-Co1-C10	$90.6(2)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{Co} 1$	$123.2(5)$
N3-Co1-C10	$88.8(2)$	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{Co} 1$	$119.3(4)$
			$117.5(4)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{O} 2$	$0.91(9)$	$1.59(9)$	$2.497(7)$	$170(7)$
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{O} \cdots \mathrm{O} 1$	$0.77(5)$	$1.73(5)$	$2.487(6)$	$172(6)$

Atoms H3O, H4O, H9A and $\mathrm{H} 9 B$ were located in a difference Fourier map and refined as independent isotropic atoms. The methyl groups (atoms C5, C6, C7, C8, C14 and their H atoms) were refined as rigid rotors, with idealized $s p^{3}$-hybridized geometry and a $\mathrm{C}-\mathrm{H}$ bond length of $0.97 \AA$. The remaining H atoms were included in the structure-factor calculations as idealized atoms (assuming $s p^{2}$ - or $s p^{3}$ hybridization of the C atoms and $\mathrm{C}-\mathrm{H}$ bond lengths of $0.94-0.98 \AA$), riding on their respective C atoms. The isotropic displacement parameters for atoms $\mathrm{H} 3 \mathrm{O}, \mathrm{H} 4 \mathrm{O}, \mathrm{H} 9 A$ and $\mathrm{H} 9 B$ refined to final values of 0.07 (3), 0.02 (1), 0.05 (2) and 0.03 (1) \AA^{2}, respectively. The $U_{\text {iso }}$ parameters of the remaining H atoms were fixed at 1.2 (nonmethyl) or 1.5 (methyl) times the U_{eq} values of the C atoms to which they are covalently bonded.

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL-NT (Bruker, 2001); program(s) used to solve structure: SHELXTL-NT; program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL$N T$; software used to prepare material for publication: SHELXTL$N T$.

MEW wishes to acknowledge the National Science Foundation for funding this research and the purchase of the X-ray equipment.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1631). Services for accessing these data are described at the back of the journal.

References

Adams, T. A., Welker, M. E. \& Day, C. S. (1998). J. Org. Chem. 63, 3683-3686.

Adams, T. A., Welker, M. E., Liable-Sands, L. M. \& Rheingold, A. L. (1997). Organometallics, 16, 1300-1307.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bresciani-Pahor, N., Forcolin, M., Marzilli, L. G., Randaccio, L., Summers, M. F. \& Toscano, P. J. (1985). Coord. Chem. Rev. 63, 1-125.

Bruker (2001). SHELXTL-NT. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
McCauley, K. M., Wilson, S. R. \& van der Donk, W. A. (2002). Inorg. Chem. 41, 393-404.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Pickin, K. A. \& Welker, M. E. (2000). Organometallics, 19, 3455-3458.
Siemens (1996). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stokes, H. L., Richardson, B. M., Wright, M. W., Vaughn, S. M., Liable-Sands, L. \& Rheingold, A. L. (1995). Organometallics, 14, 5520-5532.

Stolter, D. A., Sheldrick, G. M. \& Taylor, R. (1975). J. Chem. Soc. Dalton Trans. pp. 2124-2128.
Welker, M. E. (2001). Curr. Org. Chem. 5, 785-807.
Wright, M. W., Smalley, T. L., Welker, M. E. \& Rheingold, A. L. (1994). J. Am. Chem. Soc. 116, 6777-6791.

